Respuesta :
Answer:
a. 0.171M
b. 0.0938M
c. 0.284
d. 1.99atm
e. 1.88
Explanation:
Hello,
In this case, for the given reaction whose balance should be corrected as:
[tex]2H_2S(g) \rightleftharpoons 2H_2(g) + S_2(g)[/tex]
For which the law of mass action, in terms of the change [tex]x[/tex] due to stoichiometry and the reaction extent, turns out:
[tex]K=\frac{[H_2]_{eq}^2[S_2]_{eq}}{[H_2S]_{eq}^2}[/tex]
Thus, the initial concentration of hydrogen sulfide is:
[tex][H_2S]_0=\frac{6.75g/(34g/mol)}{0.75L} =0.265M[/tex]
Now, since the equilibrium amount of sulfur is given, the change [tex]x[/tex] due to equilibrium reaching is:
[tex][S_2]_{eq}=x=\frac{6.42x10^{-2}mol}{0.75L}=0.0856M[/tex]
Therefore:
a. Equilibrium concentration of hydrogen:
[tex][H_2]_{eq}=2x=2*0.0856M=0.171M[/tex]
b. Equilibrium concentration of hydrogen sulfide:
[tex][H_2S]_{eq}=0.265M-2x=0.265M-2*0.0856M=0.0938M[/tex]
c.) Equilibrium constant, Kc:
[tex]Kc=\frac{(0.171)^2(0.0856)}{(0.0938)^2}=0.284[/tex]
d.) Partial pressure of sulfur gas:
[tex]p_{S_2}=[S_2]RT= 0.0856\frac{mol}{L}*0.082\frac{atm*L}{mol*K}*283K=1.99atm[/tex]
e. Kc, for the reaction:
[tex]H_2(g) + \frac{1}{2} S_2(g)\rightleftharpoons H_2S(g)[/tex]
In that case, it equals the inverse halved initial reaction, whose modification is related as:
[tex]Kc_2=\frac{1}{\sqrt{Kc} } =\frac{1}{\sqrt{0.284} } =1.88[/tex]
Best regards.