Answer:
Explanation:
To solve this problem we have to consider the general red shift equation
[tex]1+z=\frac{1+vcos(\theta)/c}{\sqrt{1-v^2/c^2}}[/tex]
z=red shift
v=speed of the object
c=speed of light
θ=angle between earth and relative motion of the object
- For objects moving away θ=0 and for relative transverse motion θ=90°. Hence we have for both class of motion
[tex]1+z_{(\theta=0)}=\frac{1+v/c}{\sqrt{1-v^2/c^2}}\\1+z_{(\theta=90)}=\frac{1}{\sqrt{1-v^2/c^2}}\\[/tex]
a)
for the blue giant
[tex]z=\frac{1+(39.9*10^3m/s)/(3*10^8m/s^2)}{\sqrt{1-(39.9*10^3m/s)^2/(3*10^8m/s^2)}}-1\\z=1.33*10^{-4}[/tex]
b)
for the yellow dwarf
[tex]z=\frac{1}{\sqrt{1-(16.3*10^{3}m/s)^2/(3*10^8)^2}}-1\\z=1.48*10^{-9}[/tex]
c)
and in the same way for the red giant (but with an angle of 180°)
z = -7.56*10^{-5}
e)
and for the blue dwarf
z = 7.98*10^{-9}
I hope this is useful for you
regards!!