Answer:
the magnitude of the flux is [tex]73.30 \ \mu Wb[/tex]
the direction is inward
Explanation:
The total net magnetic flux is equal to the sum of all the magnetic flux through the surfaces.
i.e
[tex]\phi _{net} = \phi _{1} \ + \ \phi_{2} \ + \ \phi_{3}[/tex]
Given that:
[tex]\phi _ 1 = 27.4 \ \mu Wb[/tex]
Using Gauss's Law of Magnetism; we have:
[tex]\int\limits B. \ dA = 0[/tex]
[tex]\phi _{1} \ + \ \phi_{2} \ + \ \phi_{3} = 0[/tex]
Here; [tex]\phi_1 = \ - 27.4 \ \mu Wb[/tex]
and [tex]\phi_2 = B.A[/tex]
[tex]\phi_2 = \pi r^2 B[/tex]
= [tex](3.14)(12.6*10^{-2}m)^2(2.04*`10^{-3}T)[/tex]
= [tex]1016.95*10^{-7}[/tex]
= 101.70 [tex]\mu Wb[/tex]
Now [tex]\phi_3 = - \phi_1 - \phi_2[/tex]
= 27.4 - 101.70
= -74.3 [tex]\mu Wb[/tex]
so the magnitude of the flux = 74.3 [tex]\mu Wb[/tex]
b) Since the sign of the flux is negative, therefore the direction of the flux is inward.