Equation 19.9, for the thermal shock resistance of a material, is valid for relatively low rates of heat transfer. When the rate is high, then, upon cooling of a body, the maximum temperature change allowable without thermal shock, ΔTf, is approximately where σf is the fracture strength. Determine ΔTf for glass, soda-lime. The values for modulus of elasticity, tensile strength, and coefficient of thermal expansion are 69 GPa, 69 MPa, and 9 x 10-6 °C-1 respectively. Enter your answer in accordance to the question statement 111111.111 °C

Respuesta :

Answer:

T = 3561.6°C

Explanation:

Solved explanation is given in the attached document.

Ver imagen trenchard4ray
Ver imagen trenchard4ray
Ver imagen trenchard4ray
Ver imagen trenchard4ray
Ver imagen trenchard4ray

Answer:

The maximum change in temperature without thermal shock for the soda lime is 111.11°C

Explanation:

The expression for maximum change in temperature is:

[tex]deltaT=\frac{of}{E\alpha } _{1}[/tex]

where

of is the fracture strength

E is the modulus of elasticity

α1 is the linear coefficient of thermal expansion

From tables for soda lime, we have:

of=69 MPa

E=69x10^3 MPa

α1=9.0x10^-6°C

Replacing values, we have:

[tex]deltaT=\frac{69}{69x10^{3}*9x10^{-6} } =111.11 C[/tex]