Determine the moment of inertia Ixx of the mallet about the x-axis. The density of the wooden handle is 860 kg/m3 and that of the soft-metal head is 8000 kg/m3. The longitudinal axis of the cylindrical head is normal to the x-axis. Assume that the handle does not penetrate the head.

Respuesta :

Complete Question

Diagram for this  shown on the first uploaded image

Answer:

The moment of inertia Ixx of the mallet about the x-axis is [tex]I{xx}= 0.119 kg \cdot m^2[/tex]

Explanation:

From the question we are told that

        The density `of wooden handle is  [tex]\rho_w = 860 kg/m^3[/tex]

        The density `of soft-metal head  is [tex]\rho_s =8000kg/m^3[/tex]

Generally the mass of the wooden can be mathematically obtained with this formula

          [tex]m_w = \rho_w A_w l_w[/tex]

Where [tex]A_w[/tex] is mass of wooden handle which is  mathematically obtain with the formula

             [tex]A_w = \frac{\pi}{4} d^2_w[/tex]

Where [tex]d_w[/tex] is the diameter  of the wooden handle which from the diagram is

       [tex]27mm = \frac{27}{1000} = 0.027m[/tex]

So  [tex]A_w = \frac{\pi}{4} * 0.027^2[/tex]

      [tex]l_w[/tex] is the length of the the wooden handle which is given in the diagram as   [tex]l_w = 315mm = \frac{315}{1000} = 0.315m[/tex]

Substituting these value into the formula for mass

      [tex]m_w = 860 * (\frac{\pi}{4} * 0.027^2 ) *0.315[/tex]

            [tex]= 0.155kg[/tex]

Generally the mass of the soft-metal head can be mathematically obtained with this formula

           [tex]m_s = \rho_s A_s l_s[/tex]

Where [tex]A_s[/tex] is mass of soft-metal head which is  mathematically obtain with the formula

            [tex]A_s = \frac{\pi}{4} d^2_s[/tex]

Where [tex]d_s[/tex] is the diameter  of the soft-metal head which from the diagram is            

       [tex]36mm = \frac{36}{1000} = 0.036m[/tex]

So  [tex]A_s = \frac{\pi}{4} * 0.036^2[/tex]

 [tex]l_s[/tex] is the length of the the soft-metal head which is given in the diagram

     as   [tex]l_s = 90mm = \frac{90}{1000} = 0.090m[/tex]

Substituting these value into the formula for mass  

                  [tex]m_s = 8000 * (\frac{\pi}{4} * 0.036^2 ) *0.090[/tex]

                       [tex]=0.733kg[/tex]

Generally the mass moment of inertia about x-axis for the wooden handle is

                  [tex](I_{xx})_w = [\frac{1}{3}m_w + l_w^2 ][/tex]  

Substituting values

                   [tex](I_{xx})_w = [\frac{1}{3}*0.155 + 0.315^2 ][/tex]

                              [tex]=5.12*10^{-3}kg \cdot m^2[/tex]  

Generally the mass moment of inertia about x-axis for the soft-metal head is

    [tex](I_{xx})_s = [\frac{1}{12}m_s l_s ^2 + b^2][/tex]

Where b is the distance from the centroid to the axis of the head which is mathematically given as

                   [tex]b=l_w +\frac{d_s}{2}[/tex]

Substituting values

                 [tex]b = 0.315 + \frac{0.036}{2}[/tex]

                    [tex]= 0.336m[/tex]

Now substituting values into the formula for mass moment of inertia about x-axis for soft-metal head

                            [tex](I_{xx})_s = [\frac{1}{12} *0.733* 0.090^2 + 0.336^2][/tex]

                                      [tex]=0.113 kg \cdot m^2[/tex]

Generally the mass moment of inertia about x-axis is mathematically represented as

         [tex]I_{xx} = (I_{xx})_w + (I_{xx})_s[/tex]

                [tex]= [\frac{1}{3}m_w + l_w^2 ] + [\frac{1}{12}m_s l_s ^2 + b^2][/tex]

Substituting values

        [tex]I_{xx} = 5.12*10^{-3} +0.113[/tex]

               [tex]I{xx}= 0.119 kg \cdot m^2[/tex]

             

             

Ver imagen okpalawalter8