) The density of oil in a circular oil slick on the surface of the ocean at a distance of r meters from the center of the slick is given by δ(r)=401+r2 kilograms per square meter. Find the exact value of the mass of the oil slick if the slick extends from r=0 to r=5 meters.

Respuesta :

Answer:

Therefore the mass of the of the oil is 409.59 kg.

Step-by-step explanation:

Let us consider a circular disk. The inner radius of the disk be r and the outer diameter of the disk be (r+Δr).

The area of the disk

=The area of the outer circle - The area of the inner circle

= [tex]\pi (r+\triangle r)^2- \pi r^2[/tex]

[tex]=\pi [r^2+2r\triangle r+(\triangle r)^2-r^2][/tex]

[tex]=\pi [2r\triangle r+(\triangle r)^2][/tex]

Since (Δr)² is very small, So it is ignorable.

∴[tex]A=2\pi r\triangle r[/tex]

The density [tex]\delta (r)= \frac{40}{1+r^2}[/tex]

We know,

Mass= Area× density

        [tex]=(2r \pi \triangle r)(\frac{40}{1+r^2}})[/tex]

Total mass [tex]M=\sum_{i=1}^n \frac{80r_i\pi }{1+r^2}\triangle r_i[/tex]

Therefore

[tex]\sum_{i=1}^n \frac{80r_i\pi }{1+r^2}\triangle r_i=\int_0^5 \frac{80r\pi }{1+r^2}dr[/tex]

                      [tex]=40\pi[ln(1+r^2)]_0^5[/tex]

                      [tex]=40\pi [ln(1+5^2)-ln(1+0^2)][/tex]

                     [tex]=40\pi ln(26)[/tex]

                     = 409.59 kg (approx)

Therefore the mass of the of the oil is 409.59 kg.