If the third charge (–| q 3 |) is placed at point P, but not held fixed, it will experience a force and accelerate away from the other two charges. If q3 = q = –1.0 nC, the mass of the third charge m3 is 5.0 x 10-12 kg, and s = 4.0 cm, what will the speed of charged particle #3 [in m/s] be after it has moved a very large distance away?

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

A

The potential of this system is  [tex]U=6.75*10^{-7}J[/tex]

B

The electric potential at point p is [tex]V_p= -900V[/tex]

C

The work required is  [tex]W= 9*10^{-7}J[/tex]

D

The speed of the charge is  [tex]v=600m/s[/tex]

Explanation:

A sketch to explain the question is shown on the second uploaded image

Generally the potential energy for a system of two charges is mathematically represented as

            [tex]U = \frac{kq_1 q_2}{d}[/tex]

where k is the electrostatic constant with a value of  [tex]k = 9*10^9 N m^2 /C^2[/tex]

           q is the charge with a value of  [tex]q = 1*10^{-9}C[/tex]

           d is the distance given as   [tex]d =5m[/tex]

Now we are given that  [tex]q_1 = q[/tex] and  [tex]q_2 = 3q[/tex] and

Now substituting values

             [tex]U = \frac{9*10^9 *1*10^{-9} * 3*10^{-9}}{5}[/tex]

                [tex]U=6.75*10^{-7}J[/tex]

The electric potential at point P is mathematically obtained with the formula

             [tex]V_p = V_{-q} + V_{-3q}[/tex]

I.e the potential at [tex]q_1[/tex] plus the potential at  [tex]q_2[/tex]

Now potential at [tex]q_1[/tex] is mathematically represented as

                   [tex]V_{-q} = \frac{-kq}{s}[/tex]

and the potential at [tex]q_2[/tex] is mathematically represented as

                        [tex]V_{-3q} = \frac{-3kq}{s}[/tex]

Now substituting into formula for potential at  P

                  [tex]V_p = \frac{-kq}{s} + \frac{-3kq}{s} = -\frac{4kq}{s}[/tex]

                       [tex]= \frac{4*9*10^9 *1*10^{-9}}{4*10^{-2}}[/tex]

                      [tex]V_p= -900V[/tex]

The Workdone to bring the third negative charge is mathematically evaluated as

                [tex]W =\Delta U = \frac{kq_1q_3}{s} + \frac{kq_2q_3}{s}[/tex]

                                 [tex]= \frac{kq*q}{s} + \frac{kq*3q}{s}[/tex]

                                [tex]= \frac{4kq^2}{s}[/tex]

                               [tex]= \frac{4* 9*10^9 * (1*10^{-9})^2}{4*10^{-2}}[/tex]

                              [tex]W= 9*10^{-7}J[/tex]

From the Question are told that the charge [tex]q_3[/tex] would a force and an acceleration which implies that all its potential energy would be converted to kinetic energy.This can be mathematically  represented as

                   [tex]\Delta U = W = \frac{1}{2} m_{q_3} v^2[/tex]

                         [tex]9*10^{-7} = \frac{1}{2} m_{q_3} v^2[/tex]

Where [tex]m_{q_3} = 5.0*10^{-12}kg[/tex]

Now making v the subject we have

                 [tex]v = \sqrt{\frac{9*10^{-12}}{5*10^{-12}*0.5} }[/tex]

                     [tex]v=600m/s[/tex]  

Ver imagen okpalawalter8
Ver imagen okpalawalter8