Answer:
1.29
Explanation:
The level of intensity of sound (β) (in decibels, dB) is given by:
β = [tex]10log_{10}(\frac{I}{I_0} )[/tex], where I = sound intensity in watts per meter squared and [tex]I_0[/tex] = reference intensity.
Change in sound intensity level (Δβ) = [tex]\beta _2 - \beta _1[/tex] = 61 - 60 = 1
Δβ = [tex]10log_{10}(\frac{I_2}{I_0}) - 10log_{10}(\frac{I_1}{I_0})[/tex] = 1
[tex]10log_{10}(\frac{I_2}{I_0})/(\frac{I_1}{I_0})[/tex] = 1
[tex]10log_{10}(\frac{I_2}{I_1})[/tex] = 1
[tex]\frac{I_2}{I_1}[/tex] = [tex]10^{0.1}[/tex] = 1.29
Hence, the sound intensity will increase by a factor of 1.29.