Respuesta :
Answer:
The rise in temperature after 15mins is (ΔT)=[tex]31.34[/tex]°c
Explanation:
The solution is obtained from energy balance;
W=M x Cv x ΔT
where;
W(workdone)=quantity of energy in joules
Workdone=Power x Time
Power=2kw
Time=15mins=15 x 60=900secs
Workdone=2 x 900=1800KJ
Cv=Specific heat capacity of air= 0.718 kJ/kg.K
M=Mass of air=80kg
ΔT= change in temperature in °C
therefore;
ΔT=[tex]\frac{W}{Cv *M}[/tex]
ΔT=[tex]\frac{1800}{0.718*80}[/tex]
ΔT=[tex]\frac{1800}{57.44}[/tex]
ΔT=[tex]31.34[/tex]°c
Answer:
The temperature rise of air at the end of 15 min is [tex]31.34[/tex]°C
Explanation:
Data
[tex]t=15min, t=15*60sec, t=900seconds[/tex]
[tex]W=2kW[/tex]
[tex]m=80kg[/tex]
[tex]constant c_{v}[/tex]=0.718
We can use energy balance to solve the problem.
The energy balance stated that:
[tex]W=[/tex]Δ[tex]U[/tex]
[tex]W=mc_{v}[/tex]Δ[tex]T[/tex]
[tex]W=\frac{m}{t} c_{v}[/tex]Δ[tex]T[/tex]
we can now make ΔT the subject of the formula
ΔT[tex]=\frac{W*t}{mc_{v} }[/tex]
substitute the values
ΔT[tex]=\frac{2*900}{80*0.718}[/tex]
ΔT=[tex]=31.34[/tex]°C