Respuesta :

[tex]\sin 2 \theta \sec \theta=2 \sin \theta[/tex]

Solution:

To prove that [tex]\sin 2 \theta \sec \theta=2 \sin \theta[/tex].

Let us take LHS which is equal to RHS.

[tex]LHS=\sin 2 \theta \sec \theta[/tex]

Using basic trigonometric identity: [tex]\sec (\theta)=\frac{1}{\cos (\theta)}[/tex]

        [tex]$=\frac{1}{\cos \theta} \sin 2 \theta[/tex]

        [tex]$=\frac{\sin 2 \theta}{\cos \theta}[/tex]

Using trigonometric identity: [tex]\sin (2 x)=2 \cos (x) \sin (x)[/tex]

        [tex]$=\frac{2 \cos \theta \sin \theta}{\cos \theta}[/tex]

Cancel both cosθ in the numerator and denominator.

       [tex]=2 \sin \theta[/tex]

       [tex]=RHS[/tex]

LHS = RHS

[tex]\sin 2 \theta \sec \theta=2 \sin \theta[/tex]

Hence proved.