Respuesta :
Answer:
a)[tex]W = 57.6\times10^{-19} J[/tex]
b) [tex]v = 3.556\times10^6 m/s[/tex]
c) displacment = 400nm
Explanation:
Given that
charge of the electron and proton [tex]q =1.6\times10^{-19} C[/tex]
the distance between electron and proton = 2.0 nm
The force between the proton and electron
[tex]F = kq^/r^2[/tex]
Here [tex]k = 9\times10^9 N.m^2/C^2[/tex]
[tex]F = (9\times10^9)(1.6\times10^-19)(1.6\times10^-19)/(2.0\times10^-9)^2 \\= 5.76\times10^-11N[/tex]
The work done in displacing the electron from 2.0 nm to 12 nm
is the minimum kinetic energy
W = F .s
[tex]W = (5.76\times10^{-11}N)(10\times10^{-9} m)\\W = 57.6\times10^{-19} J[/tex]
(b)
If this energy is the kinetic energy of the electron
[tex](1/2) m v^2 \\= 57.6\times10^{-19} J[/tex]
Here m is the mass of the electron =[tex]9.0\times10^{-31} kg[/tex]
The speed of the electron [tex]v = 3.556\times10^6 m/s[/tex]
(c)
If the kinetic energy is twice the initial kinetic energy
2*(initial kinetic energy) = F*displacement
displacement = 2*(initial kinetic energy)/F
Displacement = [tex]2(57.6\times10^{-19} J)/(5.76\time10^{-11}N)[/tex]
displacement = 400 nm