Respuesta :

Answer:

a₄  = 1029

a₅  = 7203

Step-by-step explanation:

a₁ = 3

aₙ = aₙ₋₁ x 7

ₐ₂ = a₂₋₁ x 7 = a₁ x 7 = 3 x 7 = 21

a₃ = 21 x 7 = 147

a₄ = 147 x 7 = 1029

a₅ = 1029 x 7 = 7203

The geometrical sequence terms [tex]a_{4} = 1029[/tex] and  [tex]a_{5} = 7203[/tex]

What is geometric sequence?

"A geometric progression, also known as a geometric sequence, is a sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio."

We have

Geometric sequence terms

[tex]a_{1}[/tex] = 3

[tex]a_{n} = a_{n-1}[/tex] × [tex]7[/tex]

We have to find the [tex]a_{4}[/tex], [tex]a_{5}[/tex]

First we have to find geometric sequence terms [tex]a_{2}[/tex] and [tex]a_{3}[/tex]

[tex]a_{2} = a_{2-1}[/tex] × 7

⇒ [tex]a_{2} = a_{1}[/tex] × [tex]7[/tex]

⇒ [tex]a_{2} = 3[/tex] × [tex]7[/tex]

⇒ [tex]a_{2} = 21[/tex]

[tex]a_{3} = a_{3-1}[/tex] × [tex]7[/tex]

⇒ [tex]a_{3} = a_{2}[/tex] × [tex]7[/tex]

⇒ [tex]a_{3} = 21[/tex] × [tex]7[/tex]

⇒ [tex]a_{3}= 147[/tex]

[tex]a_{4} = a_{4-1}[/tex] × 7

⇒ [tex]a_{4} = a_{3}[/tex] × [tex]7[/tex]

⇒[tex]a_{4} = 147[/tex] × [tex]7[/tex]

⇒ [tex]a_{4} = 1029[/tex]

[tex]a_{5} = a_{5-1}[/tex] × [tex]7[/tex]

⇒ [tex]a_{5} = a_{4}[/tex] × [tex]7[/tex]

⇒ [tex]a_{5} = 1029[/tex] × [tex]7[/tex]

⇒ [tex]a_{5} = 7203[/tex]

Hence,  geometric sequence terms [tex]a_{4} = 1029[/tex] and  [tex]a_{5} = 7203[/tex]

Lear more about geometrical sequence here

https://brainly.com/question/11266123

#SPJ2