contestada

Rockfalls can cause major damage to roads and infrastructure. To design mitigation bridges and barriers, engineers use the coefficient of restitution to model the behavior of the rocks. The rock A falls a distance of 32 m before striking an incline with slope α = 40°. Knowing that the coefficient of restitution between A and the incline is 0.2, determine the velocity of the rock after the impact.

Respuesta :

Answer:

Velocity of rock fall collision, v = 13.21 m/sec

Explanation:

Detailed explanation given in the attached document.

Ver imagen trenchard4ray
Ver imagen trenchard4ray
Ver imagen trenchard4ray

Given :

Distance of the falling rock before striking the inclined plane, h = [tex]32[/tex] m

Slope, [tex]$\alpha = 40^\circ$[/tex]

The coefficient of restitution = [tex]0.2[/tex]

To find : The velocity of the rock after the impact.

The velocity of the given rock after the impact is [tex]16.70[/tex] m/sec

The potential drop of the rock is = Change in its kinetic energy

[tex]i.e.[/tex]                                          [tex]mgh= \frac{1}{2}mv^2[/tex]

                                             [tex]\Rightarrow v_A=\sqrt{2gh}[/tex]

                                             [tex]\Rightarrow v_A=\sqrt{2\times 10 \times 32}[/tex]

                                            [tex]\Rightarrow v_A=25.29[/tex] m/sec

The velocity of the rock just before collision in terms of co-ordinate axes is as :

[tex]$v_A=-v_A \sin 40^\circ\ \widehat{i} - v_A \cos 40^\circ\ \widehat{j} $[/tex]

    [tex]=(-16.25\ \widehat{i}-19.37 \ \widehat{j})[/tex]  m/sec

The collision of the ball with the plane is an oblique impact, with the line of action perpendicular to the plane. The co-efficient of restitution applies perpendicular to the incline and the momentum of the ball is conserved along the incline.

Therefore, the co-efficient of restitution applies along the y-axis :

[tex]$e=\frac{[(v_{B_y})_2-(v_{A_y})_2]}{[(v_{A_y})_1-(v_{B_y})_1]}$[/tex]

[tex]$(v_{B_y})_1=(v_{B_y})_2=0$[/tex]   (Since. the incline is still)

[tex]$\Rightarrow 0.2=\frac{-(v_{A_y})_2}{-19.37}$[/tex]

[tex]$\Rightarrow (v_{A_y})_2=(0.2)(19.37)$[/tex]

[tex]$\Rightarrow (v_{A_y})_2=3.874$[/tex] m/sec

Now  conserving momentum along the [tex]x[/tex] direction, we get

[tex]$m_A(v_{A_x})_1=m_A(v_{A_x})_2$[/tex]

[tex]$(v_{A_x})_1=(v_{A_x})_2 = -16.25 \ m/sec$[/tex]

[tex]\therefore[/tex] Velocity of the rock after the collision is :

  [tex]$v=\sqrt{(v_{A_x})_2^2+(v_{A_y})_2^2}$[/tex]

  [tex]$v=\sqrt{(-16.25)^2+(3.874)^2}$[/tex]

  [tex]v=16.70[/tex] m/sec

So, after the collision, the velocity of the rock is 16.70 m/sec.

Learn More :

https://brainly.com/question/14185497

https://brainly.com/question/24890164

Ver imagen AbsorbingMan
Ver imagen AbsorbingMan