Respuesta :

we are asked to transform the equation 3x^2+3x+2y=0 into the standard form by applying the technique of completing the square .

3(x^2+x +1/4) =-2y + 3/4
3 (x +1/2)^2 = -2 (y -3/8) 
-3/2 (x +1/2)^2 = (y -3/8) 
this follows the standard from y-b=A(x-a)^2

Answer:

The required form is [tex]y-\frac{3}{8}=-\frac{3}{2}(x+\frac{1}{2})^2[/tex]

Step-by-step explanation:

Given : Function [tex]3x^2+3x+2y=0[/tex]

To find : Complete the square and reduce to one standard form [tex]y-b=A(x-a)^2 \text{ or } x-a=A(y-b)^2[/tex]?

Solution :

Converting the functio into given standard form,

Taking y one side, [tex]-2y=3x^2+3x[/tex]

Divide by 3 both side,

[tex]-\frac{2}{3}y=x^2+x[/tex]

Applying completing the square i.e. add half square both side,

[tex]-\frac{2}{3}y+(\frac{1}{2})^2=x^2+x+(\frac{1}{2})^2[/tex]

[tex]-\frac{2}{3}y+(\frac{1}{2})^2=(x+\frac{1}{2})^2[/tex]

[tex]\frac{2}{3}y-\frac{1}{4}=-(x+\frac{1}{2})^2[/tex]

Divide by [tex]\frac{2}{3}[/tex] both side,

[tex]y-\frac{3}{8}=-\frac{3}{2}(x+\frac{1}{2})^2[/tex]

This form relates to  [tex]y-b=A(x-a)^2[/tex]

Where, [tex]b=\frac{3}{8}, A=-\frac{3}{2} ,a=-\frac{1}{2}[/tex]

Therefore, The required form is [tex]y-\frac{3}{8}=-\frac{3}{2}(x+\frac{1}{2})^2[/tex]