Respuesta :

I hope you know what '!' means
2!=2
3!=6
4!=24
basicalkly times every natural number including and before that number


nCr=[tex] \frac{n!}{r!(n-r)!} [/tex]
so
[tex] \frac{60C3}{15C3}[/tex]=
[tex]\frac{ \frac{60!}{3!(60-3)!} }{ \frac{15!}{3!(15-3)!} } [/tex]=
[tex]( \frac{60!}{3!(60-3)!})(\frac{3!(15-3)!}{15!})[/tex]=
[tex]( \frac{60!}{3!(57)!})(\frac{3!(12)!}{15!})[/tex]=
[tex] \frac{(60!)(3!)(12!)}{(3!)(57!)(15!)}[/tex]=
[tex] \frac{(60!)(12!)}{(57!)(15!)}[/tex]=
[tex] \frac{(60!)}{(57!)(15)(14)(13)}[/tex]=
[tex] \frac{(60)(59)(58)}{(15)(14)(13)}[/tex]=
[tex] \frac{(30)(59)(58)}{(15)(7)(13)}[/tex]=
[tex] \frac{(6)(59)(58)}{(3)(7)(13)}[/tex]=
[tex] \frac{6844}{91}[/tex]
The combination, nCr, which means "combination of n taken r" can be calculated by the equation,
                               nCr = n! / (n - r)!r!
where ! is a factorial sign. For the given,
                     60C3 = 60! / (60 - 3)!3! = 34220
                     15C3 = 15! / (15 - 3)!3! = 455
Their quotient is approximately 75.21.