Respuesta :

The area of the circle is determined through the equation,
                                     A = πr²
Plug in the value of area
                                    36 in² = πr²       ;  r = 3.385 in
The formula for the circumference of the circle is,
                                    C = 2πr
Substitute the value of radius,
                                C = 2π(3.385 in) = 6.77π in
Thus, the circumference of the circle is 6.77π inches. 

Answer:

The exact circumference of a circle is, [tex]12\sqrt{\pi}[/tex] inches

Step-by-step explanation:

Area(A) and circumference(C) of the circle is given by:

[tex]A = \pi r^2[/tex]

[tex]C = 2 \pi r[/tex]

where, r is the radius of the circle.

As per the statement:

an area equal to 36 sq. in.

⇒A = 36 sq. in.

then;

[tex]36 = \pi r^2[/tex]

Divide both sides by [tex]\pi[/tex]  we have;

[tex]\frac{36}{\pi} = r^2[/tex]

or

[tex]r^2=\frac{36}{\pi}[/tex]

⇒[tex]r =\sqrt{\frac{36}{\pi}}[/tex]

⇒[tex]r = \frac{6}{\sqrt{\pi}}[/tex]

We have to find the exact circumference of a circle.

[tex]C = 2 \pi r[/tex]

then;

[tex]C = 2 \cdot \pi \cdot \frac{6}{\sqrt{\pi}} = 12 \cdot \sqrt{\pi}[/tex]

⇒[tex]C = 12\sqrt{\pi}[/tex] inches

Therefore, the exact circumference of a circle is, [tex]12\sqrt{\pi}[/tex] inches