Respuesta :
y = x - 10
2x + y = 4
2x + y = 4
2x + (x - 10) = 4
2x + x - 10 = 4
3x - 10 = 4
+ 10 + 10
3x = 14
3 3
x = 4²/₃
y = x - 10
y = 4²/₃ - 10
y = -5¹/₃
(x, y) = (4²/₃, -5¹/₃)
2x + y = 4
2x + y = 4
2x + (x - 10) = 4
2x + x - 10 = 4
3x - 10 = 4
+ 10 + 10
3x = 14
3 3
x = 4²/₃
y = x - 10
y = 4²/₃ - 10
y = -5¹/₃
(x, y) = (4²/₃, -5¹/₃)
Answer:
The solution of the system of equations is (4.66,-5.33).
Step-by-step explanation:
Given : System of equations [tex]y=x-10[/tex] and [tex]2x+y=4[/tex]
To find : What is the solution to the system of equations?
Solution :
To solve the system of equation we apply substitution method.
Let [tex]y=x-10[/tex] ......(1)
[tex]2x+y=4[/tex] .......(2)
Now, substitute y from (1) in (2)
[tex]2x+y=4[/tex]
[tex]2x+(x-10)=4[/tex]
[tex]3x=14[/tex]
[tex]x=\frac{14}{3}[/tex]
[tex]x=4.66[/tex]
Substitute [tex]x=\frac{14}{3}[/tex] in (1)
[tex]y=x-10[/tex]
[tex]y=\frac{14}{3}-10[/tex]
[tex]y=\frac{14-30}{3}[/tex]
[tex]y=\frac{-16}{3}[/tex]
[tex]y=-5.33[/tex]
So, The intersection points of both the equation is (4.66,-5.33).
Therefore, The solution of the system of equations is (4.66,-5.33).