What is the solution to the system of equations?

y = x – 10

2x + y = 4

(–8, 6)
(–6, 16)
(6, –8)
(16, –6)

Respuesta :

        y = x - 10
2x + y = 4

         2x + y = 4
2x + (x - 10) = 4
  2x + x - 10 = 4
        3x - 10 = 4
            + 10 + 10
               3x = 14
                3      3
                 x = 4²/₃

                 y = x - 10
                 y = 4²/₃ - 10
                 y = -5¹/₃
           (x, y) = (4²/₃, -5¹/₃)

Answer:

The solution of the system of equations is (4.66,-5.33).

Step-by-step explanation:

Given : System of equations [tex]y=x-10[/tex] and [tex]2x+y=4[/tex]

To find : What is the solution to the system of equations?

Solution :

To solve the system of equation we apply substitution method.

Let [tex]y=x-10[/tex] ......(1)

[tex]2x+y=4[/tex] .......(2)

Now, substitute y from (1) in (2)

[tex]2x+y=4[/tex]

[tex]2x+(x-10)=4[/tex]

[tex]3x=14[/tex]

[tex]x=\frac{14}{3}[/tex]

[tex]x=4.66[/tex]

Substitute [tex]x=\frac{14}{3}[/tex] in (1)

[tex]y=x-10[/tex]

[tex]y=\frac{14}{3}-10[/tex]

[tex]y=\frac{14-30}{3}[/tex]

[tex]y=\frac{-16}{3}[/tex]

[tex]y=-5.33[/tex]

So, The intersection points of both the equation is (4.66,-5.33).

Therefore, The solution of the system of equations is (4.66,-5.33).