Respuesta :

caylus
Hello,

[tex]n!=\prod_{i=1}^n{i}=1*2*3*4...*(n-1)*n[/tex]

The factorial of a positive integer [tex]n[/tex], is the product of all positive integers less than or equal to [tex]n[/tex]. The factorial of [tex]n[/tex] is written as [tex]n![/tex].

By definition

[tex]2!=2\times1[/tex]

[tex]3!=3\times2\times1[/tex]

[tex]4!=4\times3\times2\times1[/tex]

Therefore

[tex]n!=n\times(n-1)\times(n-2)\times(n-4)...\times2\times1[/tex]

This can rewritten as

[tex]n!=n\times(n-1)![/tex]