Respuesta :

[tex]f(x)=7+4x;\ g(x)=\dfrac{1}{2}x\\\\\left(\dfrac{f}{g}\right)(x)=\dfrac{f(x)}{g(x)}=\dfrac{7+4x}{\frac{1}{2}x}=\dfrac{2(7+4x)}{x}=\dfrac{14+8x}{x}\\\\\left(\dfrac{f}{g}\right)(5)=\dfrac{f(5)}{g(5)}=\dfrac{14+8\cdot5}{5}=\dfrac{14+40}{5}=\dfrac{54}{5}=10.8[/tex]

Answer:

[tex]\frac{54}{5}[/tex]

Step-by-step explanation:

The meaning of [tex]\left ( \frac{f}{g}\right)(5)[/tex] is [tex]\frac{f(5)}{g(5)}[/tex]. So we must find [tex]f(5)[/tex] and [tex]g(5)[/tex] and then make the quocient.

You have [tex]f(x)=7+4x[/tex] and therfore you have to change x by 5 to obtain [tex]f(5)[/tex]:

[tex]f(5)=7+4(5)=7+20=27[/tex]

Do the same for g(5) with [tex]g(x)=\frac{1}{2}x[/tex]

[tex]g(5)=\frac{1}{2}(5)=\frac{5}{2}[/tex]

Finally we have

[tex]\left(\frac{f}{g} \right)(5)=\frac{f(5)}{g(5)}=\frac{27}{\frac{5}{2}}=\frac{54}{5}[/tex]