Respuesta :
Answer:
Option A
[tex]y=-2-2\sqrt{2}[/tex]
[tex]y=-2+2\sqrt{2}[/tex]
Step-by-step explanation:
we have
[tex]4-4y-y^{2}=0[/tex]
we know that
The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to
[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]-y^{2} -4y+4=0[/tex]
so
[tex]a=-1\\b=-4\\c=4[/tex]
substitute
[tex]y=\frac{4(+/-)\sqrt{(-4)^{2}-4(-1)(4)}} {2(-1)}[/tex]
[tex]y=\frac{4(+/-)\sqrt{16+16}} {-2}[/tex]
[tex]y=-\frac{4(+/-)4\sqrt{2}} {2}[/tex]
[tex]y=-\frac{4+4\sqrt{2}} {2}=-2-2\sqrt{2}[/tex]
[tex]y=-\frac{4-4\sqrt{2}} {2}=-2+2\sqrt{2}[/tex]
Answer:
Option A is correct
[tex]y= -2 + 2\sqrt{2}[/tex] and [tex]y= -2 - 2\sqrt{2}[/tex]
Step-by-step explanation:
A quadratic equation is in the form of:
[tex]ax^2+bx+c = 0[/tex],......[1] then
the solution of the equation is given by:
[tex]x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex] .....[2]
As per the statement:
Given the equation:
[tex]4 -4y-y^2 = 0.[/tex]
We can write this as:
[tex]y^2+4y-4 = 0[/tex]
On comparing with [1] we have;
a = 1, b = 4 and c = -4
Substitute these in [2] we have;
[tex]y= \frac{-4 \pm \sqrt{4^2-4(1)(-4)}}{2(1)}[/tex]
⇒ [tex]y = \frac{-4 \pm \sqrt{16+16}}{2}[/tex]
⇒ [tex]y = \frac{-4 \pm \sqrt{32}}{2}[/tex]
⇒ [tex]y= \frac{-4 \pm 4\sqrt{2}}{2}[/tex]
Simplify:
[tex]y= -2 \pm 2\sqrt{2}[/tex]
Therefore, the possible values of y are:
[tex]y= -2 + 2\sqrt{2}[/tex] and [tex]y= -2 - 2\sqrt{2}[/tex]