Respuesta :

Answer:

Part A) [tex]QR=2\sqrt{5}\ units[/tex]

Part B) [tex]PR=2\sqrt{13}\ units[/tex]

Step-by-step explanation:

The complete question in English is

Observe the isosceles PQRS trapeze in the Cartesian plane.

A) How long is the QR side?

B) What is the distance between points P and R?

The picture of the question in the attached figure

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Part  A) How long is the QR side?

we have the coordinates

Q(7,6) and R(9,2)

substitute in the formula

[tex]d=\sqrt{(2-6)^{2}+(9-7)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(2)^{2}}[/tex]

[tex]d_Q_R=\sqrt{20}\ units[/tex]

simplify

[tex]d_Q_R=2\sqrt{5}\ units[/tex]

Part B) What is the distance between points P and R?

we have the coordinates

P(3,6) and R(9,2)

substitute in the formula

[tex]d=\sqrt{(2-6)^{2}+(9-3)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(6)^{2}}[/tex]

[tex]d_P_R=\sqrt{52}\ units[/tex]

simplify

[tex]d_P_R=2\sqrt{13}\ units[/tex]

Ver imagen calculista