Answer: a) 1.029, b) (-5.318, -1.282).
Step-by-step explanation:
Since we have given that
[tex]n_1=13\\\\n_2=17\\\\\bar{x_1}=1.9\\\\\bar{x_2}=5.2[/tex]
and
[tex]s_1=2.1\\\\s_2=3.5[/tex]
So, the standard error for comparing the means :
[tex]SE=\sqrt{\dfrac{s^2_1}{n_1}+\dfrac{s^2_2}{n_2}}\\\\SE=\sqrt{\dfrac{2.1^2}{13}+\dfrac{3.5^2}{17}}\\\\SE=\sqrt{1.0598}\\\\SE=1.029[/tex]
At 95% confidence interval, z = 1.96
So, Confidence interval would be
[tex]\bar{x_1}-\bar{x_2}\pm z\times SE\\\\=(1.9-5.2)\pm 1.96\times 1.0294\\\\=-3.3\pm 2.017624\\\\=(-3.3-2.018,-3.3+2.018)\\\\=(-5.318,-1.282)[/tex]
Hence, a) 1.029, b) (-5.318, -1.282).