g You're a safety engineer reviewing plans for a university's new high-rise dorm. The elevator motors draw 20 A and behave electrically like 2.4-H inductors. You're concerned about dangerous voltages developing across the switch when a motor is turned off, and you recommend that a resistor be wired in parallel with each motor. Part A What should be the resistance in order to limit the emf to 100 V

Respuesta :

To solve the problem it is necessary to apply Ohm's law. From this it is established that the voltage is the equivalent to the product between the current and the resistance, therefore we have to,

[tex]V = IR[/tex]

Here,

V = Voltage

I = Current

R = Resistance

Rearranging to find the resistance,

[tex]R = \frac{V}{ I}[/tex]

Replacing,

[tex]R = \frac{100V}{20A}[/tex]

[tex]R = 5\Omega[/tex]

Therefore the resistance should be [tex]5\Omega[/tex]

The resistance should be [tex]\bold { 5\Omega}[/tex] in order to limit the emf to 100 V.

Ohm's law:

It states that the voltage is the equival to the product of the current and the resistance.

[tex]\bold{V =I\times R}[/tex]

Where,

V = Voltage = 100 Volts

I = Current  = 20 Ampere

R = Resistance

Put the values and solve it for R

[tex]\bold {R =\dfrac{100}{20}}\\\\\bold {R = 5\Omega}[/tex]

Therefore, the resistance should be [tex]\bold { 5\Omega}[/tex] in order to limit the emf to 100 V.

To know more about Ohm's law

https://brainly.com/question/12865879