Find all degree solutions in the interval 0° ≤ θ < 360°. If rounding is necessary, round to the nearest tenth of a degree. Use your graphing calculator to verify the solution graphically. (Enter your answers as a comma-separated list.) 5 sin2 θ − 9 cos 2θ = 03

Respuesta :

Answer:

[tex]\theta_{1} \approx 30.473^{\textdegree}[/tex]

[tex]\theta_{2} \approx 120.473^{\textdegree}[/tex]

[tex]\theta_{3} \approx 210.473^{\textdegree}[/tex]

[tex]\theta_{4}\approx 300.473^{\textdegree}[/tex]

Step-by-step explanation:

The equation needs to be rearranged in terms of one trigonometric function:

[tex]5\cdot \sin 2\theta - 9\cdot \cos 2\theta = 0[/tex]

[tex]5\cdot \tan 2\theta - 9 = 0[/tex]

[tex]5\cdot \tan 2\theta = 9[/tex]

[tex]\tan 2\theta = \frac{9}{5}[/tex]

[tex]\theta = \frac{1}{2}\cdot \tan^{-1} \left(\frac{9}{5} \right)[/tex]

The tangent function has positive values in the 1st and 3rd Quadrants. Then, the solutions are:

[tex]\theta_{1} \approx 30.473^{\textdegree}[/tex]

[tex]\theta_{2} \approx 120.473^{\textdegree}[/tex]

[tex]\theta_{3} \approx 210.473^{\textdegree}[/tex]

[tex]\theta_{4}\approx 300.473^{\textdegree}[/tex]