Suppose that the inverse market demand for silicone replacement tips for Sony earbud headphones is p ​= pN ​- 0.1Q, where p is the price per pair of replacement​ tips, pN is the price of a new pair of​ headphones, and Q is the number of tips per week. Suppose that the inverse supply function of the replacement tips is p ​= 2​ + 0.012 Q. a. The effect of a change in the price of a new pair of headphones on the equilibrium price of replacement tips​ ( ​dp/dpN​) at the equilibrium is given by nothing ​(Round your answer to three places​.)

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

   The effect of a change in the price of a new pair of headphones on the equilibrium price of replacement tips​ ( ​dp/dpN​) is

                   [tex]\frac{\delta p}{\delta p_N} =1[/tex]

b

 The value of Q and p at equilibruim is

          [tex]Q_e = 250[/tex]    and    [tex]p_d =[/tex] 5

The consumer surplus is  [tex]C= 3125[/tex]

The producer surplus  is   [tex]P = 375[/tex]

Explanation:

      From the question we are told that

           The inverse market demand is  [tex]p_d = p_N -0.1Q[/tex]

                The inverse supply function is     [tex]p_s = 2+ 0.012Q[/tex]

a

The effect of change in the price  is mathematically given as

                  [tex]\frac{\delta p}{\delta p_N}[/tex]

Now differntiating the inverse market demand function with respect to [tex]p_N[/tex]

We get that  

                   [tex]\frac{\delta p}{\delta p_N} =1[/tex]

b

   We are told that [tex]p_N =[/tex]$30

        Therefore the inverse market demand becomes

                             [tex]p_d = 30 -0.1Q[/tex]

At  equilibrium

                  [tex]p_d = p_s[/tex]

So we have

               [tex]30 -0.1Q_e = 2+ 0.012Q_e[/tex]

Where [tex]Q_e[/tex] is the quantity at equilibrium

                    [tex]28 = 0.112Q_e[/tex]

                     [tex]Q_e = \frac{28}{0.112}[/tex]

                    [tex]Q_e = 250[/tex]

Substituting the value of  Q into the equation for the inverse market demand function

                [tex]p_d = 30 - 0.1 (250 )[/tex]

                    [tex]p_d =[/tex] 5

Looking at the equation for [tex]p_d \ and \ p_s[/tex] we see that

     For  Q =  0

             [tex]p_d = 30[/tex]

             [tex]p_s =2[/tex]

 And  for Q =  250

                 [tex]p_d = 5[/tex]

                 [tex]p_s = 5[/tex]

Hence the consumer surplus is mathematically evaluated as

           [tex]C = \frac{1}{2} * Q_e * (30 -5)[/tex]

Substituting value

        [tex]C = \frac{1}{2} * 250 (30-5)[/tex]

           [tex]C= 3125[/tex]

And

  The  producer surplus is mathematically evaluated as

                    [tex]P = \frac{1}{2} *250 * (5-2)[/tex]

                    [tex]P = 375[/tex]

     

         

           

                     

Ver imagen okpalawalter8