A steam power plant receives heat from a furnace at a rate of 280 GJ/h. (that is
‘giga’ joules.) Heat losses to the surrounding air from the steam as it passes through the pipes and other components are estimated to be about 8 GJ/h. If the waste heat is transferred to the cooling water at a rate of 145 GJ/h, determine (a) the net power output and (b) the thermal efficiency of this power plant.

Respuesta :

Answer:

a) [tex]\dot W_{out} = 35.278\,MW[/tex], b) [tex]\eta_{th} = 45.357\,\%[/tex]

Explanation:

a) The net power output is:

[tex]\dot W_{out} = \dot Q_{in} - \dot Q_{out} - \dot Q_{loss}[/tex]

[tex]\dot W_{out} = \left(280\,\frac{GJ}{h} - 145\,\frac{GJ}{h} - 8\,\frac{GJ}{h}\right)\cdot \left(\frac{1000\,MJ}{1\,GJ}\right)\cdot \left(\frac{1\,h}{3600\,s} \right)[/tex]

[tex]\dot W_{out} = 35.278\,MW[/tex]

b) The thermal efficiency of the power plant is:

[tex]\eta_{th} = \frac{\dot Q_{in}-\dot Q_{out} - \dot Q_{loss}}{\dot Q_{in}}\times 100\,\%[/tex]

[tex]\eta_{th} = \frac{280\,\frac{GJ}{h}-145\,\frac{GJ}{h}-8\,\frac{GJ}{h} }{280\,\frac{GJ}{h} } \times 100\,\%[/tex]

[tex]\eta_{th} = 45.357\,\%[/tex]