Answer:
The partial pressure of [tex]O_{2} = 1.455[/tex] bar.
Explanation:
Given:
Volume [tex]V = 2.66[/tex] L
Total pressure [tex]P_{} = 4.50[/tex] bar
Temperature of system [tex]T = 298[/tex] K
Moles of nitrogen [tex]n = 0.297[/tex] mole
Partial pressure [tex]P_{co_{2} } = 0.269[/tex] bar
From ideal gas equation,
[tex]PV = nRT[/tex]
Where [tex]R = 8.314 \times 10^{-2} \frac{L .bar}{K.mol}[/tex] = gas constant
First finding partial pressure of nitrogen
[tex]P_{N_{2} } = \frac{nRT}{V}[/tex]
[tex]P_{N_{2} } = \frac{0.297\times 8.314 \times 10^{-2} \times 298}{2.66}[/tex]
[tex]P_{N_{2} } = 2.766[/tex] bar
We know, total pressure is given by
[tex]P = P_{O_{2} } + P_{N_{2} } + P_{CO_{2} }[/tex]
[tex]P_{O_{2} } = 4.50 - 0.269 - 2.776[/tex]
[tex]P_{O_{2} } =1.455[/tex] bar
Therefore, the partial pressure of [tex]O_{2} = 1.455[/tex] bar.