Respuesta :

Given:

Let A denote the angle of the given triangle which measures ∠A = 81°

Let B denote the angle which measures ∠B = 40°

The length of the side a = x.

The length of the side b = 7 cm.

We need to determine the value of x.

Value of x:

The value of x can be determined using the law of sine formula.

Applying the law of sine, we have;

[tex]\frac{sin \ A}{a}=\frac{sin \ B}{b}[/tex]

Substituting the values, we have;

[tex]\frac{sin \ 81^{\circ}}{x}=\frac{sin \ 40^{\circ}}{7}[/tex]

Simplifying, we get;

[tex]\frac{0.988}{x}=\frac{0.643}{7}[/tex]

Cross multiplying, we have;

[tex]0.988 \times 7=0.643 x[/tex]

     [tex]6.916=0.643x[/tex]

       [tex]10.8=x[/tex]

Thus, the length of the side x is 10.8 cm.

Following are the calculation to find the x:

Given:

Assuming the triangle is ABC:

then

[tex]\angle A=81^{\circ}\\\\\angle B=40^{\circ}\\\\a= 7\ cm\\\\[/tex]

To find:

x=?

Solution:

To find the x value we use the Law of sine:

[tex]\to \bold{\frac{\sin A}{a} =\frac{\sin B}{ b}}[/tex]

Putting the given value:

[tex]\to \frac{\sin 81^{\circ}}{x}= \frac{\sin 40^{\circ}}{7}\\\\ \to \frac{0.988}{x} =\frac{0.643}{7}\\\\\to \frac{0.988 \times 7}{0.643} =x\\\\\to x= \frac{0.988 \times 7}{0.643} \\\\\to x= \frac{6.916 }{0.643} \\\\\to x=10.755\approx 10.8[/tex]

Therefore, the final answer is "10.8 cm".

Learn more:

brainly.com/question/21444145