Respuesta :
Answer:
The Jacobian ∂(x, y, z) ∂(u, v, w) for the indicated change of variables
= -3072uv
Step-by-step explanation:
Step :-(i)
Given x = 1 6 (u + v) …(i)
Differentiating equation (i) partially with respective to 'u'
[tex]\frac{∂x}{∂u} = 16(1)+16(0)=16[/tex]
Differentiating equation (i) partially with respective to 'v'
[tex]\frac{∂x}{∂v} = 16(0)+16(1)=16[/tex]
Differentiating equation (i) partially with respective to 'w'
[tex]\frac{∂x}{∂w} = 0[/tex]
Given y = 1 6 (u − v) …(ii)
Differentiating equation (ii) partially with respective to 'u'
[tex]\frac{∂y}{∂u} = 16(1) - 16(0)=16[/tex]
Differentiating equation (ii) partially with respective to 'v'
[tex]\frac{∂y}{∂v} = 16(0) - 16(1)= - 16[/tex]
Differentiating equation (ii) partially with respective to 'w'
[tex]\frac{∂y}{∂w} = 0[/tex]
Given z = 6uvw ..(iii)
Differentiating equation (iii) partially with respective to 'u'
[tex]\frac{∂z}{∂u} = 6vw[/tex]
Differentiating equation (iii) partially with respective to 'v'
[tex]\frac{∂z}{∂v} =6 u (1)w=6uw[/tex]
Differentiating equation (iii) partially with respective to 'w'
[tex]\frac{∂z}{∂w} =6 uv(1)=6uv[/tex]
Step :-(ii)
The Jacobian ∂(x, y, z)/ ∂(u, v, w) =
[tex]\left|\begin{array}{ccc}16&16&0\\16&-16&0\\6vw&6uw&6uv\end{array}\right|[/tex]
Determinant 16(-16×6uv-0)-16(16×6uv)+0(0) = - 1536uv-1536uv
= -3072uv
Final answer:-
The Jacobian ∂(x, y, z)/ ∂(u, v, w) = -3072uv

