A right triangle whose hypotenuse is 3 centimeters long is revolved about one of its legs to generate a right circular cone. Find the radius, height, and volume of the right cone that will have the greatest volume when constructed this way.

Respuesta :

Answer:

The height of the right circular cone when constructed this way is [tex]\sqrt3[/tex] cm.

The radius of the right circular cone when constructed this way is [tex]\sqrt6[/tex] cm.

The volume of the right circular cone when constructed this way is [tex]6\sqrt3 \pi[/tex] cm³.

Step-by-step explanation:

Given that,

A right triangle whose hypotenuse is 3 cm long is revolved .

Then other two legs of the triangle will be radius and height of the cone.

Assume the height and radius of the cone be h and r respectively.

From Pythagorean Theorem :

h²+r²=3²

⇒ r²= 9 - h²

Then the volume of the cone is

V= π r²h

⇒ V= π(9-h²)h                [ ∵ r²= 9 - h²]

⇒V= π(9h - h³)

Differentiating with respect to h

V'=π(9 - 3h²)

Again differentiating with respect to h

V''= π(-6h)

⇒V''= (-6πh)

To maximum or minimum ,we set V'=0

π(9 - 3h²)=0

⇒3h²=9

⇒h²=3

[tex]\Rightarrow h=\sqrt3[/tex]

Now, [tex]V''|_{h=\sqrt3}=-6\pi (\sqrt3)<0[/tex].

Since at [tex]h=\sqrt3[/tex],V''<0.

The volume of cone is maximum at [tex]h=\sqrt3[/tex] cm when constructed this way.

The height of the right circular cone when constructed this way is [tex]\sqrt3[/tex] cm.

The radius of the right circular cone when constructed this way  [tex]r=\sqrt{9-(\sqrt3)^2[/tex]

   =  [tex]\sqrt{9-3}[/tex]

   [tex]=\sqrt6[/tex] cm.

The volume of the  right circular cone when constructed this way is

=π r²h

[tex]=\pi (\sqrt6)^2\sqrt3[/tex]

[tex]=6\sqrt3 \pi[/tex] cm³