Air at a pressure of 1 atm and a temperature of 50 °C is in parallel flow over the top surface of a flat plate that is heated to a uniform temperature of 100 °C. The plate has a length of 0.20 m (in the flow direction) and a width of 0.10 m. The Reynolds number based on the plate length is 40,000.
a. What is the rate of heat transfer from the plate to the air?
b. If the free stream velocity of the air is doubled and the pressure is increased to 10 atm, what is the rate of heat transfer?

Respuesta :

The right answer is B

It is given that :

Let the mean bulk temperature [tex]$=\frac{50+100}{2}$[/tex]

                                                    [tex]$=75^\circ C$[/tex]

From the property table at 1 bar and [tex]$75^\circ C$[/tex],

[tex]$K=0.02917 \ W/\mu K, \ Pr = 0.71055 $[/tex]

Flow is laminar as Re = 4000 for laminar.

Flow Nusselt Number is given by :

[tex]$\overline{Nu} = 0.664 (Re)^{0.5} Pr^{1/3} = \frac{hd}{K}$[/tex]

[tex]$\theta = 4 \times 0.2 \times 0.1 \times (100-50)$[/tex]

  [tex]$=17.32$[/tex]

At 10 bar and [tex]$75^\circ C$[/tex],

[tex]$\rho = 9.999 \ kg/m^3 , \ \mu =20.91 \times 10^{-6}$[/tex]

[tex]$K=30.05 \times 10^{-7} \ W/\mu K, \ Pr = 0.7092, \ C_p=1.019 \ kJ/kg K$[/tex]

[tex]$Re_2 = \frac{9.999 \times 2 \times V}{1 \times 20.9 \times 10^{-6}}$[/tex]

Initial, [tex]$Re_i = \frac{1 \times V}{1 \times 20.82 \times 10^{-6}}$[/tex]

                [tex]$=40000$[/tex]

[tex]$V=40000 \times 0.2 \times 20.82 \times 10^{-6}$[/tex]

[tex]$Re_2 = \frac{9.999 \times 2 \times 40000}{1 \times 20.9 \times 10^{-6}}$[/tex]

[tex]$Re_2=796477.01$[/tex]

Flow is turbulent.

This Nusselt number is given by :

[tex]$Nu=(0.037)(Re)^{0.8}- 8\pi Pr^{1/3}=958.75$[/tex]

[tex]$h=\frac{958.75 \times k}{0.2}$[/tex]

  [tex]$=144.05 \ W /\mu^2C$[/tex]

[tex]$\theta =144.05 \times 0.2 \times 0.1 \times (100.5)$[/tex]

  [tex]$=144.05 \ \omega$[/tex]

Learn More :

https://brainly.in/question/43296102

https://brainly.in/question/48196879

Ver imagen AbsorbingMan