Two circular loops of wire, each containing a single turn, have the same radius of 5.00 cm and a common center. The planes of the loops are perpendicular. Each carries a current of 2.10 A. What is the magnitude of the net magnetic field at the common center

Respuesta :

Answer:

The net magnitude of magnetic field at the common center is

[tex]3.729 \times 10^{-5}[/tex] T

Explanation:

Given:

Radius of circular loop [tex]r = 5 \times 10^{-2}[/tex] m

Current [tex]I = 2.10[/tex] A

Number of turn [tex]N = 1[/tex]

Magnitude of magnetic field at the common center is given by,

      [tex]B_{1} = \frac{\mu_{o} NI }{2r}[/tex]

      [tex]B _{1} = \frac{4\pi \times 10^{-7} \times 1 \times 2.10 }{2 \times 5 \times 10^{-2} }[/tex]

      [tex]B_{1} = 2.637 \times 10^{-5}[/tex] T

Now, both loops having same magnetic field but perpendicular to each other.

   [tex]B _{net} = \sqrt{B_{1}^{2} + B _{1}^{2} }[/tex]

   [tex]B _{net} = \sqrt{2} B_{1}[/tex]

   [tex]B_{net} = \sqrt{2} \times 2.637 \times 10^{-5}[/tex]

   [tex]B_{net} = 3.729 \times 10^{-5}[/tex] T

Therefore, the net magnitude of magnetic field at the common center is [tex]3.729 \times 10^{-5}[/tex] T