According to the information given, the Heisenberg uncertainty principle would be given by the relationship
[tex]\Delta x \Delta v \geq \frac{h}{4\pi m}[/tex]
Here,
h = Planck's constant
[tex]\Delta v[/tex] = Uncertainty in velocity of object
[tex]\Delta x[/tex] = Uncertainty in position of object
m = Mass of object
Rearranging to find the position
[tex]\Delta x \geq \frac{h}{4\pi m\Delta v}[/tex]
Replacing with our values we have,
[tex]\Delta x \geq \frac{6.625*10^{-34}m^2\cdot kg/s}{4\pi (9.1*10^{-31}kg)(0.01*10^6m/s)}[/tex]
[tex]\Delta x \geq 5.79*10^{-9}m[/tex]
Therefore the uncertainty in position of electron is [tex]5.79*10^{-9}m[/tex]