The magnetic field at the center of a wire loop of radius , which carries current , is 1 mT in the direction (arrows along the wire represent the direction of current). For the following wires, which all also carry current , indicate the magnitude (in mT) and direction of the magnetic field at the center (red point) of each configuration.

Respuesta :

Complete Question

 The complete question is shown on the first uploaded image

Answer:

The magnetic field is [tex]B_{net} = \frac{1}{4} * mT[/tex]

And the direction is  [tex]-\r k[/tex]

Explanation:

      From the question we are told that

                 The magnetic field at the center is [tex]B = 1mT[/tex]

Generally magnetic field is mathematically represented as

              [tex]B = \frac{\mu_o I}{2R}[/tex]

We are told that it is equal to 1mT

So

                [tex]B = \frac{\mu_o I}{2R} = 1mT[/tex]

From the first diagram we see that the effect of the current flowing in the circular loop is  (i.e the magnetic field generated)

                         [tex]\frac{\mu_o I}{2R} = 1mT[/tex]

 This implies that the effect of a current flowing in the smaller semi-circular loop is (i.e the magnetic field generated)

                   [tex]B_1 = \frac{1}{2} \frac{\mu_o I}{2R}[/tex]

and  for the larger semi-circular loop  is

                 [tex]B_2 = \frac{1}{2} \frac{\mu_o I}{2 * (2R)}[/tex]

Now a closer look at the second diagram will show us that the current in the semi-circular loop are moving in the opposite direction

    So the net magnetic field would be

                   [tex]B_{net} = B_1 - B_2[/tex]

                        [tex]= \frac{1}{2} \frac{\mu_o I}{2R} -\frac{1}{2} \frac{\mu_o I}{2 * (2R)}[/tex]

                        [tex]=\frac{\mu_o I}{4R} -\frac{\mu_o I }{8R}[/tex]

                        [tex]=\frac{\mu_o I}{8R}[/tex]

                        [tex]= \frac{1}{4} \frac{\mu_o I}{2R}[/tex]

Recall  [tex]\frac{\mu_o I}{2R} = 1mT[/tex]

    So  

             [tex]B_{net} = \frac{1}{4} * mT[/tex]

Using the Right-hand rule we see that the direction is into the page which is [tex]-k[/tex]

Ver imagen okpalawalter8