Answer : The rate constant at 207 K is, [tex]4.49\times 10^6M^{-1}s^{-1}[/tex]
Explanation :
According to the Arrhenius equation,
[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]
or,
[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_1[/tex] = rate constant at [tex]298K[/tex] = [tex]1.08\times 10^7M^{-1}s^{-1}[/tex]
[tex]K_2[/tex] = rate constant at [tex]207K[/tex] = ?
[tex]Ea[/tex] = activation energy for the reaction = [tex]11.4kJ/mol=11400J/mol[/tex]
R = gas constant = 8.314 J/mole.K
[tex]T_1[/tex] = initial temperature = 298 K
[tex]T_2[/tex] = final temperature = 207 K
Now put all the given values in this formula, we get:
[tex]\log (\frac{K_2}{1.08\times 10^7M^{-1}s^{-1}})=\frac{11400J/mol}{2.303\times 8.314J/mole.K}[\frac{1}{298K}-\frac{1}{207K}][/tex]
[tex]K_2=4.49\times 106M^{-1}s^{-1}[/tex]
Therefore, the rate constant at 207 K is, [tex]4.49\times 10^6M^{-1}s^{-1}[/tex]