Answer:
6
Step-by-step explanation:
The average rate of change over the interval [tex][a,b][/tex] for a function [tex]f[/tex] is [tex]\frac{f(b)-f(a)}{b-a}[/tex].
So the average rate of change for [tex]f(x)=2^x[/tex] on [tex][2,4][/tex] is:
[tex]\frac{2^4-2^2}{4-2}=\frac{16-4}{2}=\frac{12}{2}=6[/tex].