Consider the Gibbs energies at 25 ∘C.

Substance ΔG∘f (kJ⋅mol−1)ΔGf∘ (kJ·mol−1)
Ag+(aq)Ag+(aq) 77.177.1
Cl−(aq)Cl−(aq) −131.2−131.2
AgCl(s)AgCl(s) −109.8−109.8
Br−(aq)Br−(aq) −104.0−104.0
AgBr(s)AgBr(s) −96.9−96.9

(a) Calculate ΔG∘rxn for the dissolution of AgCl(s)AgCl(s).
kJ⋅mol−1

(b) Calculate the solubility-product constant of AgCl.
K=

(c) Calculate ΔG∘rxnΔGrxn∘ for the dissolution of AgBr(s)AgBr(s).
kJ⋅mol−1kJ⋅mol−1

(d) Calculate the solubility-product constant of AgBr.
K=K=

Respuesta :

Answer:

A)Δ​G​r​x​n​∘​=​55.7​k​J​/​m​o​l

B)Ksp=1.75×10^−10

C)Δ​G​r​x​n​∘​=​70.0​k​J​/​m​o​l

D)Ksp=5.45×10^−13

Explanation:

ΔGrxn∘=​Δ​G​f​,​p​r​o​d​u​c​t​s​∘​−​Δ​G​f​,​r​e​a​c​t​a​n​t​s​∘

To calculate for the

Ksp

of the dissolution reaction can be claculated

ΔGrxn∘=−RTlnKsp

where R is the proportionality constant equal to 8.3145 J/molK.

A)

Δ​G​r​x​n​∘​=​[​Δ​G​f​,​A​g​(​a​q​)​+​∘​+​Δ​G​f​,​C​l​(​a​q​)​−​∘​]​−​Δ​G​f​,

A​g​C​l​(​s​)​⇌​A​g​(​a​q​)​+​+​C​l​(​a​q​)​−

ΔG∘rxn=[77.1kJ/mol+(−131.2kJ/mol)]−(−109.8kJ/mol)

Δ​G​r​x​n​∘​=​55.7​k​J​/​m​o​l

b) Calculate the solubility-product constant of AgCI.

ΔGrxn∘=−RTlnKsp

55.7​k​J​/​m​o​l​=​−​(​8.3145​×​10​−​3​J​/​m​o​l​K​)​(​298.15​K)InKsp

Ksp=1.75×10^−10

c) Calculate

To calculate ΔG°rxn

for the dissolution of AgBr(s).

Δ​G​r​x​n​∘​=​[​Δ​G​f​,​A​g​(​a​q​)​+​∘​+​Δ​G​f​,​B​r​(​a​q​)​−​∘​]​−​Δ​G​f​,

Δ​G​r​x​n​∘​=​[​77.1​k​J​/​m​o​l​+​(​−​104.0​k​J​/​m​o​l​)​]​−​(​−96.90kj/mol

Δ​G​r​x​n​∘​=​70.0​k​J​/​m​o​l

d)To Calculate the solubility-product constant of AgBr.

ΔGrxn∘=−RTlnKsp

70.0kJ/mol=−(8.3145×10−3J/molK)(298.15K)lnKsp

70.0​k​J​/​m​o​l​=​−​(​8.3145​×​10​−​3​J​/​m​o​l​K​)​(​298.15​K

Ksp=5.45×10^−13

The free energy change for the dissolution of AgCl is 55.7  kJ⋅mol−1 and the solubility product of silver chloride is 1.7  × 10^-10.

We need to obtain the ΔG∘rxn for the dissolution of each specie and the equilibrium constant from the following;

a) AgCl(s) ⇄ Ag+(aq) + Cl−(aq)

ΔG∘rxn =  77.1 kJ⋅mol−1 + (−131.2 kJ⋅mol−1) - ( −109.8 kJ⋅mol−1)

ΔG∘rxn = 55.7  kJ⋅mol−1

b) Then;

ΔG∘rxn = -RTlnKsp

Ksp = e^-(ΔG∘rxn/RT)

Ksp = e^-(55.7  × 10^3J⋅mol−1 /8.314 × 298 K)

Ksp = 1.7  × 10^-10

c) AgBr(s) ⇄ Ag+(aq) + Br−(aq)

ΔG∘rxn =  77.1 kJ·mol−1 + (−104.0 kJ·mol−1 ) - (−96.9 kJ·mol−1)

ΔG∘rxn = 70 kJ·mol−1

d) Then

ΔG∘rxn = -RTlnKsp

Ksp = e^-(ΔG∘rxn/RT)

Ksp =e^-(70 × 10^3J·mol−1 /8.314 × 298 K)

Ksp = 5.4 × 10^-13

Learn more: https://brainly.com/question/14191541