Iron(III) oxide and hydrogen react to form iron and water, like this: Fe_2O_3(s) + 3H_2(g) rightarrow 2Fe(s) + 3H_2O(g) At a certain temperature, a chemist finds that a 5.4 L reaction vessel containing a mixture of iron(III) oxide, hydrogen, iron, and water at equilibrium has the following composition: Calculate the value of the equilibrium constant K_c for this reaction. Round your answer to 2 significant digits.

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

The equilibrium constant is  [tex]K_c= 2.8*10^{-4}[/tex]

Explanation:

      From  the question we are told that

              The chemical reaction equation is

      [tex]Fe_{2} O_{3}_{(s)} + 3H_{2}_{(g)} -----> 2Fe_{(s)} + 3H_{2} O_{(g)}[/tex]

The voume of the misture is  [tex]V_m = 5.4L[/tex]  

  The molar mass of  [tex]Fe_{2} O_{3}_{(s)}[/tex] is a constant with value of  [tex]M_{Fe_{2} O_{3}_{(s)} } = 160g/mol[/tex]

    The molar mass of  [tex]H_{2}_{(g)}[/tex]    is a constant with value of  [tex]H_2 = 2g/mol[/tex]

   

    The molar mass of  [tex]H_{2}O[/tex]    is a constant with value of  [tex]H_2O = 18g/mol[/tex]

Generally the number of moles  is mathematically given as

                     [tex]No \ of \ moles \ = \frac{mass}{molar\ mass}[/tex]

    For   [tex]Fe_{2} O_{3}_{(s)}[/tex]

          [tex]No \ of\ moles = \frac{3.54}{160}[/tex]

                                [tex]= 0.022125 \ mols[/tex]

     For  [tex]H_{2}[/tex]

               [tex]No \ of\ moles = \frac{3.63}{2}[/tex]

                                [tex]= 1.815 \ mols[/tex]

       For  [tex]H_{2}O[/tex]

                         [tex]No \ of\ moles = \frac{2.13}{18}[/tex]

                                              [tex]= 0.12 \ mols[/tex]

Generally the concentration of a compound  is mathematicallyrepresented  as

       [tex]Concentration = \frac{No \ of \ moles }{Volume }[/tex]

      For   [tex]Fe_{2} O_{3}_{(s)}[/tex]

                [tex]Concentration[Fe_2 O_3] = \frac{0.222125}{5.4}[/tex]

                                         [tex]= 4.10*10^{-3}M[/tex]                          

       For  [tex]H_{2}[/tex]

                  [tex]Concentration[H_2] = \frac{1.815}{5.4}[/tex]

                                           [tex]= 0.336M[/tex]

      For  [tex]H_{2}O[/tex]

                [tex]Concentration [H_2O] = \frac{0.12}{5.4}[/tex]

                                                  [tex]= 0.022M[/tex]

  The equilibrium constant  is mathematically represented as

                [tex]K_c = \frac{[concentration \ of \ product]}{[concentration \ of \ reactant ]}[/tex]

  Considering [tex]H_2O \ for \ product[/tex]

            And      [tex]H_2 \ for \ reactant[/tex]

At  equilibrium the

                    [tex]K_c = \frac{0.022}{0.336}[/tex]

                          [tex]K_c= 2.8*10^{-4}[/tex]

Ver imagen okpalawalter8