Respuesta :
Answer:
the angular speed of the apparatus [tex]\omega_f =11.962 \ rad/s[/tex]
the angle through which the apparatus turns in radians or degrees is : [tex]\theta = 68.54^0[/tex]
Explanation:
Given that :
mass of uniform disk M = 1.2 kg
Radius R = 0.11 m
lower radius (b) = 0.14 m
small mass (m) = 0.4 kg
Force (F) = 21 N
time (∆t) =0.2 s
Moment of Inertia of [tex]I_{disk, CM}[/tex] = [tex]\frac{1}{2}MR^2[/tex]
= [tex]\frac{1}{2}*1.2*0.11^2[/tex]
= 0.00726 kgm²
Point mass [tex]I_{point \ mass}[/tex] = mb²
But since four low rods are attached ; we have :
[tex]I_{point \ mass}[/tex] = 4 × mb²
= 4 × 0.4 (0.14)²
= 0.03136 kgm²
Total moment of Inertia = [tex]I_{disk, CM}[/tex] + [tex]I_{point \ mass}[/tex]
= (0.00726 + 0.03136) kgm²
= 0.03862 kgm²
Assuming ∝ = angular acceleration = constant;
Then; we can use the following kinematic equations
T = FR
T = 2.1 × 0.11 N
T = 2.31 N
T = I × ∝
2.31 = 0.03862 × ∝
∝ = [tex]\frac{2.31}{0.03862}[/tex]
∝ = 59.81 rad/s²
Using the formula [tex]\omega_f = \omega_i + \alpha \delta T[/tex] to determine the angular speed of the apparatus; we have:
[tex]\omega_f =0 + 59.81*0.2[/tex] since [tex]( w_i \ is \ at \ rest ; the n\ w_i = 0 )[/tex]
[tex]\omega_f =11.962 \ rad/s[/tex]
∴ the angular speed of the apparatus [tex]\omega_f =11.962 \ rad/s[/tex]
b) Using the formula :
[tex]\theta = \omega_i t + \frac{1}{2}*\alpha*(t)^2\\\\\theta = 0 *0.2 + \frac{1}{2}*59.81*(0.2)^2 \\ \\ \theta = 29.905 *(0.2)^2 \\ \\ \theta = 1.1962 rads \ \ \ ( to \ degree; \ we \ have) \\ \\ \theta = 68.54^0[/tex]
Thus, the angle through which the apparatus turns in radians or degrees is : [tex]\theta = 68.54^0[/tex]