Answer:
The mass of the wheel is 2159.045 kg
Explanation:
Given:
Radius [tex]r = 0.330[/tex]
m
Force [tex]F = 290[/tex] N
Angular acceleration [tex]\alpha = 0.814 \frac{rad}{s^{2} }[/tex]
From the formula of torque,
Γ [tex]= I\alpha[/tex] (1)
Γ [tex]= rF[/tex] (2)
[tex]rF = I \alpha[/tex]
Find momentum of inertia [tex]I[/tex] from above equation,
[tex]I = \frac{rF}{\alpha }[/tex]
[tex]I = \frac{0.330 \times 290}{0.814}[/tex]
[tex]I = 117.56[/tex] [tex]Kg. m^{2}[/tex]
Find the momentum inertia of disk,
[tex]I = \frac{1}{2} Mr^{2}[/tex]
[tex]M = \frac{2I}{r^{2} }[/tex]
[tex]M = \frac{2 \times 117.56}{(0.330)^{2} }[/tex]
[tex]M = 2159.045[/tex] Kg
Therefore, the mass of the wheel is 2159.045 kg