Answer:
Explanation:
For frequency in a wire , the expression is
n = [tex]\frac{1}{2l} \sqrt{\frac{T}{m} }[/tex] , n is frequency , T is tension , m is mass of wire per unit length
[tex]n = \frac{1}{2l} \sqrt{\frac{T}{\pi r^2} }[/tex] r is radius of the wire
For first the expression can be written as
730 = [tex]\frac{1}{2l} \sqrt{\frac{T}{\pi r^2} }[/tex]
For second wire
n = [tex]\frac{1}{2 \times2 l } \sqrt{\frac{2T}{4\pi r^2} }[/tex] length = 2l , tension = 2T , radius = 2r .
Dividing
n / 730 = 1 / 2 √2
= 1 / 2.828
n = 258.13 Hz