You have been asked to design a rectangular box with a square base and an open top. The volume of the box must be 1715cm3. Determine the dimensions of the bin that will minimize the surface area, where x is the length of each side of the base and y is the height of the box.

Respuesta :

Answer:

x=15.08 cm

y=7.54 cm

Step-by-step explanation:

We are given that

Volume of box=1715 cubic cm

Side length of base=x

l=b=x

Height of box=h=y

Volume of box=lbh=x^2y

[tex]1715=x^2y[/tex]

[tex]y=\frac{1715}{x^2}[/tex]

Surface area of box=Area of bottom+area of four faces=[tex]x^2+4xy[/tex]

[tex]S=x^2+4x(\frac{1715}{x^2}=x^2+\frac{6860}{x}[/tex]

Differentiate w.r.t x

[tex]S'(x)=2x-\frac{6860}{x^2}[/tex]

[tex]S'(x)=0[/tex]

[tex]2x-\frac{6860}{x^2}=0[/tex]

[tex]2x=\frac{6860}{x^2}[/tex]

[tex]x^3=\frac{6860}{2}=3430[/tex]

[tex]x=(3430)^{\frac{1}{3})=15.08[/tex]

Again differentiate w.r.t x

[tex]S''(x)=2+\frac{13720}{x^3}[/tex]

Substitute x=15.08

[tex]S''(x)=2+\frac{13720}{(15.08)^3}>0[/tex]

Hence, the surface area is minimum at x=15.08 cm

[tex]y=\frac{1715}{(15.08)^2}=7.54 cm[/tex]