The composite figure comprises of a cone balanced on top of cylinder
Step-by-step explanation:
The composite figure is formed from a cone and a cylinder with the same base radius, Let the base radius be r
Then the volume of the cone will be [tex]V_{cone}[/tex]
Then the volume of the cylinder will be [tex]V_{cylinder}[/tex]
[tex]V_{cylinder} = \pi r^{2} h_{cylinder}[/tex]
The total volume of the composite figure will be V, where
[tex]V= V_{cone} + V_{cylinder}[/tex]
[tex]V = \frac{1}{3} \pi r^{2} h_{cone} +\pi r^{2} h_{cylinder}[/tex]
let the height of cone and cylinder be same
The volume of the composite figure will be [tex]\frac{4}{3} \pi r[/tex][tex]r^{2} h[/tex]
Hence [tex]\frac{4}{3} = \frac{a}{b}[/tex]
Thecomposite figure comprises of a cone balanced on top of cylinder