The triangular prism has a volume of 27 cubic units.

A triangular prism.
What will be the volume of the prism if each side is dilated by a factor One-third?
1 cubic unit
3 cubic units
8 cubic units
9 cubic units

The triangular prism has a volume of 27 cubic units A triangular prism What will be the volume of the prism if each side is dilated by a factor Onethird 1 cubic class=

Respuesta :

Given:

The volume of the triangular prism = 27 cubic units

To find the volume of the prism if each side is dilated by [tex]\frac{1}{3}[/tex]

Formula

The volume of a triangular prism

[tex]V = \frac{1}{2} ach[/tex]

where, a be the height of the triangle

c be the base of the triangle

h be the height of the prism

Let us take after dilation the we get,

[tex]a \rightarrow \frac{1}{3} a[/tex]

[tex]c \rightarrow \frac{1}{3} c[/tex] and

[tex]h \rightarrow \frac{1}{3} h[/tex]

So,

After dilation the volume will be

[tex]V_{1} =\frac{1}{2} (\frac{a}{3} )(\frac{c}{3} )(\frac{h}{3} )[/tex]

or, [tex]V_{1} =\frac{1}{9} (\frac{1}{2} ach)[/tex]

or, [tex]V_{1}=\frac{1}{9} (27)[/tex] [Since, [tex]V = \frac{1}{2} ach = 27[/tex]]

or, [tex]V_{1} = 3[/tex]

Hence,

After dilation the volume of the prism will be 3 cubic unit.

Answer:

9

Step-by-step explanation:

27 x [tex]\frac{1}{3}[/tex]=9