The bulk modulus of a material is 3.5 ✕ 1011 N/m2. What percent fractional change in volume does a piece of this material undergo when it is subjected to a bulk stress increase of 107 N/m2? Assume that the force is applied uniformly over the surface.

Respuesta :

Answer:

percentage change in volume  = 0.00285 %

Explanation:

given data

bulk modulus = 3.5 × [tex]10^{11}[/tex]  N/m²

bulk stress = [tex]10^{7}[/tex]  N/m²

solution

we will apply here bulk modulus formula that is

bulk modulus = [tex]\frac{bulk\ stress}{bulk\ strain}[/tex]   ...............1

put here value and we get

3.5 × [tex]10^{11}[/tex] = [tex]\frac{10^7}{bulk\ strain}[/tex]  

solve it we get

bulk strain = 2.8571 × [tex]10^{-5}[/tex]

and

bulk strain = [tex]\frac{change\ volume}{original\ volume}[/tex]  

so that percentage change in volume is = 2.8571 × [tex]10^{-5}[/tex]  × 100

percentage change in volume  = 0.00285 %