contestada

A single-turn current loop, carrying a current of 4.05 A, is in the shape of a right triangle with sides 50.0, 120, and 130 cm. The loop is in a uniform magnetic field of magnitude 85.0 mT whose direction is parallel to the current in the 130 cm side of the loop. What are the magnitude of the magnetic forces on each of the three sides

Respuesta :

Answer:

[tex]F_{130} = 0 N[/tex]

[tex]F_{50} = 0.15889 N[/tex]

[tex]F_{120}=0.15889 \ N[/tex]

Explanation:

From the diagram  below:

[tex]B_x = - Bcos \theta[/tex] and [tex]B_y = Bsin \theta[/tex]

[tex]tan \theta = \frac{50}{120}[/tex]

[tex]\theta = tan^{-1} (\frac{50}{120})[/tex]

[tex]\theta = 22.62 ^0[/tex]

Magnetic Force on the  130 cm length is [tex]\theta[/tex]:

[tex]F = BILsin \theta \\\\[/tex]

[tex]F = BILsin (0 )[/tex]     ( since  [tex]\theta[/tex] = 0 ; i.e parallel)

[tex]F_{130} = 0 N[/tex]

Magnetic Force on the  50 cm length is:

[tex]F_{50} = Il_yB_xCos \theta[/tex]

[tex]F_{50} = 4.05*50*10^{-2}*85*10^{-3}cos (22.62)[/tex]

[tex]F_{50} = 0.15889 N[/tex]

Magnetic Force on the  120 cm length is:

[tex]F_{120}= IL_xB_yCos \theta[/tex]

[tex]F_{120}= IL_xBsin \theta[/tex]

[tex]F_{120}=4.05 * 120*10^{-2}*85*10^{-3}sin(22.62)[/tex]

[tex]F_{120}=0.15889 \ N[/tex]

Ver imagen ajeigbeibraheem