Answer:
[tex]F_{130} = 0 N[/tex]
[tex]F_{50} = 0.15889 N[/tex]
[tex]F_{120}=0.15889 \ N[/tex]
Explanation:
From the diagram below:
[tex]B_x = - Bcos \theta[/tex] and [tex]B_y = Bsin \theta[/tex]
[tex]tan \theta = \frac{50}{120}[/tex]
[tex]\theta = tan^{-1} (\frac{50}{120})[/tex]
[tex]\theta = 22.62 ^0[/tex]
Magnetic Force on the 130 cm length is [tex]\theta[/tex]:
[tex]F = BILsin \theta \\\\[/tex]
[tex]F = BILsin (0 )[/tex] ( since [tex]\theta[/tex] = 0 ; i.e parallel)
[tex]F_{130} = 0 N[/tex]
Magnetic Force on the 50 cm length is:
[tex]F_{50} = Il_yB_xCos \theta[/tex]
[tex]F_{50} = 4.05*50*10^{-2}*85*10^{-3}cos (22.62)[/tex]
[tex]F_{50} = 0.15889 N[/tex]
Magnetic Force on the 120 cm length is:
[tex]F_{120}= IL_xB_yCos \theta[/tex]
[tex]F_{120}= IL_xBsin \theta[/tex]
[tex]F_{120}=4.05 * 120*10^{-2}*85*10^{-3}sin(22.62)[/tex]
[tex]F_{120}=0.15889 \ N[/tex]