Bryce reads in the latest issue of Pigskin Roundup that the average number of rushing yards per game by NCAA Division II starting running backs is 50 with a standard deviation of 8 yards. If the number of yards per game (X) is normally distributed, what is the probability that a randomly selected running back has 64 or fewer rushing yards

Respuesta :

Answer:

0.9599 is the probability that a randomly selected running back has 64 or fewer rushing yards.

Step-by-step explanation:

We are given the following information in the question:

Mean, μ = 50

Standard Deviation, σ = 8

We are given that the distribution of number of rushing yards per game is a bell shaped distribution that is a normal distribution.

Formula:

[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]

P(running back has 64 or fewer rushing yards)

[tex]P( x \leq 64) = P( z \leq \displaystyle\frac{64 - 50}{8}) = P(z \leq 1.75)[/tex]

Calculation the value from standard normal z table, we have,  

[tex]P(x \leq 64) = 0.9599[/tex]

0.9599 is the probability that a randomly selected running back has 64 or fewer rushing yards.