Answer:
Δπ Min = -0.0709
Δπ Max = -0.0535
Step-by-step explanation:
Here we have
[tex]z=\frac{(\hat{p_{1}}-\hat{p_{2}})-(\mu_{1}-\mu _{2} )}{\sqrt{\frac{\hat{p_{1}}(1-\hat{p_{1}}) }{n_{1}}-\frac{\hat{p_{2}}(1-\hat{p_{2}})}{n_{2}}}}[/tex]
Where:
[tex]{\hat{p_{1}}[/tex] = 13% = 0.13
[tex]\hat p_{2}[/tex] = 14% = 0.14
n₁ = 163
n₂ = 160
Therefore, we have;
[tex]z=\frac{(\hat{p_{1}}-\hat{p_{2}})}{\sqrt{\frac{\hat{p_{1}}(1-\hat{p_{1}}) }{n_{1}}-\frac{\hat{p_{2}}(1-\hat{p_{2}})}{n_{2}}}}[/tex]
Plugging the values gives
z = -0.263
CI 90% = critical z = [tex]\pm[/tex]1.644
The minimum difference in true proportion = -0.0709
The maximum difference in true proportion = 0.0535.