Respuesta :
Answer:
a. 205320
b. 34220
c. 60! / (35)! (25)! + 60!/ (40)!(20)! + 60!/ (45)! (15)!
Step-by-step explanation:
a) The number of ways to dustribute exams among the TA's is:
n / (n - r)!
n= number of things to choose from
r= Choosing r number
60P3= 60! / (60 - 3)!
(60)(59)(58)(57)! / (57)!
=205320
B) The number of ways to dustribute the exams among the TA's is:
n! /(n - r)! r!
60C3= 60! /(60 - 3)! 3!
= 60!/ 57! 3!
= 60 × 59 × 58 / 3 × 2 × 1
= 34220
C) The required number of ways is:
60C25 + 60C20 + 60C15
= 60! / (35)! (25)! + 60!/ (40)!(20)! + 60!/ (45)! (15)!
The TAs grading the final exam is an illustration of permutation and combination
- If order matters, there are 205320 ways to distribute the exams
- If order does not matter, there are 34220 ways to distribute the exams
- There are ways [tex]\mathbf{1.69 \times 10^{26}}[/tex] to distribute at different rates of 25 exams, 20 exams and 15 exams
The given parameters are:
[tex]\mathbf{n = 60}[/tex] --- exam grades
[tex]\mathbf{r = 3}[/tex] --- number of TAs
(a) Distribute exams among the three TAs if order matters
This implies that we permute the 60 exams among the three TAs.
So, we have:
[tex]\mathbf{^{60}P_3 = \frac{60!}{(60 - 3)!}}[/tex]
This gives
[tex]\mathbf{^{60}P_3 = \frac{60!}{57!}}[/tex]
Expand
[tex]\mathbf{^{60}P_3 = \frac{60 \times 59 \times 58 \times 57!}{57!}}[/tex]
[tex]\mathbf{^{60}P_3 = 60 \times 59 \times 58}[/tex]
[tex]\mathbf{^{60}P_3 = 205320}[/tex]
(b) Distribute exams among the three TAs if order does not matters
This implies that we combine the 60 exams among the three TAs.
So, we have:
[tex]\mathbf{^{60}C_3 = \frac{60!}{(60 - 3)!}3!}[/tex]
This gives
[tex]\mathbf{^{60}C_3 = \frac{60!}{57!3!}}[/tex]
So, we have:
[tex]\mathbf{^{60}C_3 = \frac{205320}6}[/tex]
[tex]\mathbf{^{60}C_3 = 34220}[/tex]
(c) Distribute at different rates of 25 exams, 20 exams and 15 exams
This is calculated as:
[tex]\mathbf{Ways = \frac{60!}{25! \times 20! \times 15!}}[/tex]
So, we have:
[tex]\mathbf{Ways = 1.69 \times 10^{26}}[/tex]
Read more about permutation and combination at:
https://brainly.com/question/15301090