An object is taken from a freezer at negative 8 degrees Upper C. Let t be the time in hours after the object was taken from the freezer. At time t the average temperature of the object is increasing at the rate of Upper T prime (t )equals 20 e Superscript negative 0.4 t degrees Celsius per hour. Find the temperature of the object at time t.

Respuesta :

Answer:

[tex]T(t)=-50e^{-0.4t}+42[/tex]

Step-by-step explanation:

We are given that

[tex]T(0)=-8^{\circ} C[/tex]

[tex]T'(t)=20e^{-0.4t}[/tex]

Integrating on both sides

[tex]T(t)=20\int e^{-0.4 t}[/tex]

[tex]T(t)=\frac{20}{-0.4}e^{-0.4t}+C[/tex]

Using the formula

[tex]\int e^{ax}dx=\frac{e^{ax}}{a}+C[/tex]

Substitute t=0 and  T(0)=-8

[tex]-8=-50+C[/tex]

[tex]C=-8+50=42[/tex]

Substitute the value of C

[tex]T(t)=-50e^{-0.4t}+42[/tex]